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a b s t r a c t

In this paper, we use an artificial neural network approach to obtain predictions of neutron irradiation
induced hardening, more precisely of the change in the yield stress, for reactor pressure vessel steels
of pressurized water nuclear reactors. Different training algorithms are proposed and compared, with
the goal of identifying the best procedure to follow depending on the needs of the user. The numerical
importance of some input variables is also studied. Very accurate numerical regressions are obtained,
by taking only four input variables into account: neutron fluence, irradiation temperature, and chemical
composition (Cu and Ni content). Accurate extrapolations in term of neutron fluence are obtained.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that reactor pressure vessel (RPV) steels used in
light water nuclear reactors harden and embrittle under neutron
irradiation. Embrittlement is customarily measured in terms of in-
crease of the ductile-to-brittle transition temperature (DBTT),
measured by means of Charpy tests. Nuclear regulations impose
safety margins on this increase, according to rules that may some-
what change depending on the country, as safeguard against RPV
failure in both service and accidental conditions [1,2]. Radiation
embrittlement of materials depends a priori on many variables:
not only neutron fluence, flux, and energy spectrum, but also irra-
diation temperature, chemical composition, and pre-irradiation
material history [3]. All these variables must be simultaneously
considered to reliably predict pressure vessel embrittlement. How-
ever, in order to be able to assess the effect of the different vari-
ables on the mechanical response of the steels, each of them
should be varied independently of the others in a sufficiently wide
range. Such an approach is clearly unrealistic.

Although inadequate to cover all possible conditions, a large
amount of data from surveillance capsules and from material test
reactors does exist. One of the most important goals for utilities
and other nuclear stakeholders is the development, based on
‘‘clever’’ interpolations and extrapolations of the available data,
of reliable trend curves, providing estimates of steel embrittlement
as a function of the most important among the above-mentioned
variables [2].
ll rights reserved.
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Artificial intelligence is the combination of algorithms, data and
software used to develop computer systems that can be defined
intelligent. One defining feature of intelligence is the capability of
learning from past experience and solving problems when impor-
tant information is missing, so as to be able to handle complex sit-
uations and to correctly react to new circumstances. There are
many different computational models which are considered
branches of the artificial intelligence field, each one suited to a dif-
ferent kind of problem. Artificial neural networks (ANN), for in-
stance, provide a general framework for representing non-linear
functional mappings between a set of input variables and a set of
output functions [4]. The list of successful applications of ANN to
real-life problems is endless, in sundry domains of interests, e.g.
character and image recognition, image compression, stock market
prediction, tumor detection in medical image analysis, vehicle
piloting, etc. The interested reader can find general information
for example in [5,6].

In the field of nuclear materials, ANN have been applied by
Kemp et al. [7] to the analysis and prediction of the yield strength
increase (DrY) induced by irradiation in low activation ferritic/
martensitic steels, which are candidate structural materials for fu-
ture nuclear fusion reactors. Their conclusion was very encourag-
ing concerning the ANN capability of analyzing irradiation
damage, at least within the range of irradiation parameters and
steel composition that are covered in the database used for train-
ing. Later on, Windsor et al. [8] have shown that the network can
also be used for extrapolating to fluences higher than those in-
cluded in the training database. In this work, we use a different
ANN approach to construct a mathematical regression of the radi-
ation-induced DrY, as a function of irradiation parameters and
steel composition. Differently from [7,8], we compare two different
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ANN training approaches (classical and Bayesian), and try to iden-
tify the most suitable, depending on the purpose of the trained
ANN. Moreover, we define and compare two different algorithms
to split the available data in training and validation sets, because
this aspect of the ANN training problem is very important for appli-
cations where the available amount of training data is limited.

The objectives of this work are manifold:

1. To exploit, as effectively as possible, the information contained
in the available databases from surveillance and material test
reactors irradiations, for both steels and alloys.

2. To identify in a systematic way the variables that appear to be
of higher or lesser importance, based on the available data,
within the ranges covered, i.e. based on interpolations. For
example, the possible existence of a flux effect is addressed.

3. To attempt an extrapolation outside the ranges covered by the
databases and evaluate the reliability of these extrapolations,
by assessing the capability of the ANN to predict a certain cat-
egory of data when trained on a different category. For example,
prediction of the evolution of hardening for higher fluences will
be attempted.

4. To provide a guide to design future irradiation experiments on
steels and alloys, in order to better understand specific effects
and dependencies.

Fully reliable predictions will only be possible once the impor-
tant physical mechanisms acting during irradiation have been
identified, understood and quantified at all relevant scales, from
the atomic scale to the component scale. However, an empirical
approach based on advanced regression techniques, such as ANN,
can be beneficial for industrial applications within a shorter delay
and can even be useful to guide the longer term development of
physical models.

In Section 2, we describe in detail the different ANN training ap-
proaches that we propose, and provide some theoretical back-
ground for the reader unfamiliar with these techniques. Then, we
briefly describe, in Section 3, the RADAMO database that is used
throughout this paper. In Section 4, training experiments are re-
ported, aimed at identifying which, according to our ANN, are the
most influential factors for hardening. Finally, in Section 5 we com-
pare the different algorithms proposed in Section 2 in order to
establish which combination is the most suitable for extrapolation
under given conditions.
2. Methodology

Artificial neural networks (ANN) are powerful computational
models, capable of providing efficient numerical regressions even
Fig. 1. Schematic representation of an artificial neural network (ANN) with four input va
signals are propagated from left to right, in a layer-by-layer fashion, without feedback co
processes its input signals into its own output.
when many input variables are involved. In this work, we use
the classical feed-forwards multi-layer perception [4] with one
hidden layer, linear combination functions and hyperbolic tangent
activation functions, as depicted in Fig. 1. It is a universal approxi-
mator in the sense that it can approximate any continuous multi-
variate function to any desired degree of accuracy, provided that
enough hidden nodes are available [9,10]. The universal approxima-
tion theorem, however, does not provide a theoretical framework
for training ANN, but only demonstrates the existence of at least
one ideal architecture for any regression problem, without guaran-
teeing that it can be found by training, and without giving an esti-
mate of the number of training examples that must be provided.

The output of the ANN shown in Fig. 1 can be written as:

DrY ¼ tanh wO0 þ
XH

j¼1

wOj tanh wj0 þ
X4

k¼1

wjk � ik

 ! !
ð1Þ

where H is the number of hidden nodes, i are the input variables.
The fixed coefficients wO0, wOj, wjO and wjk are the synaptic weights
(also often called synapses). The advantage of the ANN method is
that this generic expression does not require the user to explicitly
state how input variables and outputs are related to each others,
unlike the usual trend curves [11,12]. All input variables are con-
nected to all hidden nodes, and these play the role of simple pro-
cessing units that, connected in network, can reproduce complex
mappings that are not necessarily visible to the user. The drawback,
however, is that no reasonable physical interpretation of the indi-
vidual terms in Eq. (1) can be given.

ANN training, i.e. the problem of determining the optimal num-
ber H of hidden nodes and the optimal numerical value for the syn-
aptic weights in Eq. (1), is in practice solved as a non-linear
optimization problem and has many empirical aspects. A database
of input/output examples – for this application exclusively coming
from either neutron irradiation experiments or nuclear power
plants surveillance programs – is used as target for fitting. A good
practice is to separate this database into a training and a reference
set; the training set is only used to optimize the ANN, and the ref-
erence set is used to assess the accuracy of its predictions for new
cases. The problem of how to define such sets is addressed in the
next section.

2.1. Algorithms for the definition of training and reference sets

A good practice, before training the ANN, is to define training
and reference sets from the available database. It is essential to
make sure that both sets are equally representative of the domains
in the input and output spaces, without overlap, in order to provide
a rich training set that contains enough learning material. On the
other hand, it is also important to keep enough pertinent and, most
riables (i1–i4), one hidden layer with six hidden nodes and one output (O). The input
nnection and without layer by-pass. The right part of the figure shows how a node
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importantly, independent examples for the validation of the
trained ANN.

In some applications, the database can simply be split by ‘‘shuf-
fling and cutting’’, like one would do with playing cards. This sim-
ple algorithm is, however, unsuitable for this application, for the
following reasons:

(A) The distribution of points in the database input/output space
is generally non-homogenous, as illustrated in Fig. 2. In par-
ticular, some regions are very sparsely populated, usually by
just a couple of points. A completely random ‘‘shuffle-and-
cut’’ algorithm could therefore lead to a poor sampling of
these regions. Measures should be taken to avoid this.

(B) The ‘‘shuffle-and-cut’’ algorithm, even if biased to ensure
proper representativity of both sets, inherently assumes that
data points are sufficiently independent from each other,
under the condition that at least one input variable assumes
a different value. For this application, however, the input
variables describing the chemical composition of a given
steel are likely to operate in synergy and to have a dominant
influence on the corresponding ANN output, DrY. It might
thus be preferable to group the data points by steels and
build training and reference sets operating on the data taken
steel by steel, i.e. without separating data points referring to
the same steel.

Based on these considerations, we have used two different algo-
rithms to build training and reference sets from a given database:

� Algorithm ‘‘by independent points’’: Here, we ignore the possibil-
ity of dominance of the input variables describing the chemical
composition of a given steel and simply apply the ‘‘shuffle-and-
cut’’ algorithm. However, we do not apply it in a completely
blind (random) way. Instead, we impose the condition that all
data points belonging to the sparsely populated regions of the
input/output space (Fig. 2), should be equally distributed within
the two sets.
� Algorithm ‘‘by steel’’: The data points are grouped depending on

the steel they belong to and these groups are then assigned to
one or the other set, trying to share equally the distributions
of chemical compositions. This is not straightforward because
of the nature of the databases.

The former algorithm has the advantage of being simpler and of
creating training and reference sets in which all input variables
(and corresponding output values) are more equally distributed.
The latter algorithm is of more convoluted application, but takes
Fig. 2. Typical distribution of values for a given input variable in databases of
irradiated steels. The variable in question can be for example the content of a
certain chemical element or the irradiation temperature; the only output of interest
for the RADAMO database is DrY.
into account the fact that the examples used as reference for the
ANN are steels and not independent concentrations of chemical
elements.

2.2. Training algorithms

In this section, we describe the problem of training the ANN to
reproduce as closely as possible the output data (DrY in the pres-
ent application), as a function of the input variables listed in the
introduction.

We use the Levenberg–Marquardt (LM) training algorithm
[13,14], regularized by early stopping [4]. The training set is used
to update the synaptic weights in an iterative way, whereas the
reference set is used to decide when training should be stopped,
by assessing the actual ANN extrapolation skills on ‘‘never-seen’’
cases. In addition to the classical training scheme based on early
stopping, we also considered the possibility of applying node decay,
under a Bayesian training scheme [4], in order to compare the per-
formance of the correspondingly obtained ANNs. The complete
objective function f, to be minimized on the training set, is:

f ¼ b
XT

t¼1

ðdt � OtÞ2 þ a
XW
i¼1

w2
i ð2Þ

Here, dt is the desired ANN output for the training example number
t out of T training examples and Ot is the corresponding network
prediction. wi is synapse i out of W. a and b are the Bayesian hyper-
parameters. The second term in Eq. (2) allows node decay to be
introduced: it encourages the network to develop small value syn-
apses connections, so as to yield the simplest possible regression. If
this term is kept, the application of early stopping becomes theoret-
ically unnecessary. In a classical LM training, with early stopping,
we impose a = 0 and b = 1, to turn off node decay. On the contrary,
in a Bayesian training, a and b are not imposed, but are iteratively
fitted. In this case, a variance on the ANN outputs can be theoreti-
cally calculated, to be later used as error bar:

r2 ¼ 1
b
þ gT � A�1 � g ð3Þ

Here A is the matrix of the second order derivatives of the function f
(see Eq. (2)) with respect to the synapses and g is the vector of the
first order derivatives of the ANN output with respect to the
synapses.

The reason for comparing the two training schemes is that the
Bayesian scheme is expected to create a less complex and therefore
more general ANN, presumably more suitable for extrapolation
purposes. On the other hand, Bayesian trained networks generally
commit larger errors on the reference set compared to networks
trained with a classical algorithm, as a consequence of the right-
hand side term of Eq. (2).

The input variables are linearly normalized between �0.150
and +0.150 as is common practice in ANN training. Flux and flu-
ences, however, are linearly normalized on a logarithmic scale
(i.e. we take their logarithms as input variables and normalize
them between �0.150 and +0.150 afterwards), because they vary
by several orders of magnitude in the range covered by the data-
base used in this work. This normalization in log-space homoge-
nizes well the distribution of flux and fluences in the database.
The output is linearly normalized between �1 and +1, because
the output of the ANN is bound to this range, due to the hyperbolic
tangent activation function of the output node. The synaptic
weights are randomly initialized between �1 and +1. Fig. 3 illus-
trates how the average error committed on the training and refer-
ence sets, after training, evolves with the number H of hidden
nodes. The error on the training set always decreases with the
addition of new nodes, because: (1) the function f is optimized



Fig. 3. Illustration of the usual dependence on the number of hidden nodes of the
average error committed by the ANN, on the training set (TSet) and reference set
(RSet). The dashed line shows the optimal number Hopt to retain, for the sake of
generality.

Fig. 4. Distribution of points in the Cu–Ni content space for the nine PWR steels and
the four VVER steels contained in the RADAMO database. The PWR points are
separated in training and reference sets, defined ‘‘by steels’’.
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on this set; (2) the ANN output derived from Eq. (2) is so general
that the addition of new degrees of freedom helps improving the
accuracy of the prediction. On the contrary, the error committed
on the reference set stops decreasing after a certain optimal num-
ber Hopt of hidden nodes, because the ANN becomes more special-
ized for the list of examples used for training.

2.3. Use of network committees

A properly trained ANN is expected to provide good predictions
for any new set of input variables, at least in the ranges covered by
the training and reference sets. However, in practice no single ANN
can be fully trusted because the mapping between input variables
and output that is constructed during training is fitted ‘‘in a mean
square sense’’. The network may have poorly learned the real effect
of some input variables under particular sets of conditions that are
insufficiently represented in the database. In other words, one
should not expect an ANN to be able to predict physical phenom-
ena that are not sufficiently represented in the database of exam-
ples used for training: the predictions made in partitions of the
input space that are not properly covered by the training database
are very likely to vary significantly from network to network, even
if trained on the same database. For this reason, it is generally wi-
ser to make predictions using a committee of networks, all trained
on the basis of the same training and reference sets, rather than
using individual networks. The final prediction of a committee of
ANN, given a set of input variables, will be the average O of the pre-
dictions of the individual networks in the committee. In this way, a
variance can be calculated:

r2 ¼ 1
N

XN

i¼1

rðiÞ
2 þ 1

N

XN

i¼1

ðOðiÞ � OÞ2 ð4Þ

Here, N is the number of networks in the committee, r(i) is the stan-
dard deviation for the prediction of network i (calculated using Eq.
(3)), and O(i) is the prediction of network i. Note that all r(i) are 0 if
the networks have been trained with the classical LM algorithm,
without Bayesian node decay.
3. The RADAMO database

The RADAMO experimental program [15–18] was conducted at
SCK�CEN to generate an experimental database covering a large
spectrum of irradiation conditions. RADAMO was specifically ori-
ented to measure irradiation effects on the tensile properties of
RPV materials. Pressurized water reactor (PWR) and VVER1 materi-
als (plates, forgings and welds) with various chemical compositions
1 VVER is the abbreviation used to denote Russian-type light water reactors.
were irradiated in the BR2 material test reactor under well con-
trolled conditions at two temperatures, T = 300 �C and T = 265 �C in
a large neutron fluence range from low (U < 1023 n/m2) to high
(U > 1.5 � 1024 n/m2, energy > 1 MeV) and various flux levels
(u = 0.2–8 � 1017 n/m2/s, energy > 1 MeV).

The database contains 346 entries related to PWR materials
(nine different steels) and 63 entries related to VVER materials
(four different steels). The input variables are: neutron flux, neu-
tron fluence, irradiation temperature, chemical content with re-
spect to several elements (Cu, Ni, P, Mn, Si, etc.) and also the
product form (plate, forging or weld). The output is the variation
DrY of the yield stress measured by tensile tests at room temper-
ature. Fig. 4 depicts the distribution of the 13 different steels in
terms of Cu and Ni contents. We see that VVER materials are signif-
icantly different from PWR steels, especially in terms of Ni content.
At this stage, in this work, we only use the PWR data to train the
ANN. VVER data are kept in a separate database, to be used at a la-
ter stage to assess the performance of the trained ANNs, when em-
ployed to extrapolate to compositions significantly different from
those represented in training and reference sets.

Before defining training and reference sets from the PWR data,
we also separate a set corresponding to the highest neutron flu-
ences: set PWR_HF, which contains 20 data points, all with neutron
fluence higher than, or equal to 1.5 � 1024 n/m2. As in the case of
the VVER data, this set will be used at a later stage to test the per-
formance of the trained ANNs, when employed to extrapolate to
high fluence.

In conclusion, only the 326 remaining data points were used to
build training and reference sets. These, as explained in Section 2.1,
where defined in two different ways:

(A) by independent points, with 162 data points in the training
set (PWR_TA) and 164 in the reference set (PWR_RA);

(B) by steels, with 174 data points in the training set (PWR_TB),
corresponding to five different steels, and 152 in the refer-
ence set (PWR_RB), corresponding to four steels.

4. Results

4.1. Identification of the most influential input variables

In this section we describe the differences between ANN com-
mittees trained on different sets of input variables, in order to
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identify which are the dominant ones determining the output, DrY.
Neutron fluence and irradiation temperature are unquestionably
important and were therefore always included. The training exper-
iments presented here concern the effect of the following vari-
ables: neutron flux, product form, and chemical composition.

For these experiments, we exclusively used the training and ref-
erence sets defined with the algorithm ‘‘by steel’’, in order to min-
imize the risk of specializing the ANN for all nine RPV steels of the
database. The classical LM training algorithm is the most appropri-
ate, because it allows more precision to be achieved within the gi-
ven database, as will be clearly shown later.

In order to evaluate the performance of the ANN, we compared
the predicted values with the values in the reference set. Better
performance corresponds to better correlation between the two
values, assessed using Pearson’s product-moment correlation coef-
ficient, R2, as well as by calculating the average error, �e, defined as:

�e ¼ 1
R

XR

r¼1

jdr � Orj ð5Þ

Here dr is the desired ANN output for the reference example r out of
R, and Or is the actual ANN output for the same input variables.

Extensive studies led us to the following conclusions:

� Product form and neutron flux are apparently variables that do
not influence the output DrY, because, all other input variables
being identical, their inclusion or exclusion does not change the
ANN quality of prediction. Therefore, we conclude that no sig-
nificant product form or flux effect is numerically discernable,
at least in the range of irradiation conditions and chemical com-
positions covered by the RADAMO database.
� Amongst the chemical composition input variables, Cu content

is unquestionably (and unsurprisingly) the dominant one. Fig. 5
shows that, even by considering only the Cu content as
chemical composition variable, the correlation between pre-
dicted and reference data is very strong.
Fig. 5. Comparison of ANN predictions, measured on the reference set by committees of
are taken into account. Training and reference sets were defined with the algorithm ‘‘by
input variables are: neutron fluence, irradiation temperature, and the content of the chem
calculated with Eq. (5), and R2 is Pearson’s product-moment correlation coefficient.
� The addition of the content of a second chemical element as
input variable improved the correlation. However, the improve-
ment achieved is almost the same independently of the choice
of the second element (Ni, Mn and Si).

This last point is illustrated in Fig. 5, which shows ANN predic-
tions obtained when neutron fluence, irradiation temperature and
contents of two chemical elements are taken into account. We see
first of all that the accuracy of the predictions is, in general, very
high, and is, on average, of the same order as the experimental
uncertainty. We also see that the difference in the quality of the
prediction when considering Ni, Si, or Mn content as second chem-
ical composition variable, is almost indiscernible. Taking any of
them into account, in addition to Cu, hardly makes any difference
in the final ANN accuracy.

We can suggest several explanations for this interesting result:

� Copper has a clear and distinguishable effect on the output DrY,
which is very easily learned by the ANN. The other elements
also have a distinguishable influence, separate from the copper
effect, but there is a synergy between them, so that it is hard to
isolate the individual effects of Ni, Mn and Si. So, the ANN
understands the synergic effect without distinguishing the
actual role of each element, possibly because of the limited
number of steels compositions in the database.
� The ANN is not learning a general logic, but is in fact construct-

ing a non-physical artifact that minimizes the function f in Eq.
(2), by somehow ‘‘memorizing’’ the steels of the database,
therefore making predictions that are only sound for them. This
is however unlikely, because the algorithm ‘‘by steel’’ to define
the training and reference sets is specifically aimed at avoiding
this.
� The ANN manages to find a correlation between Ni, Mn and Si

contents that is not immediately visible to us, but does exist.
Such a correlation may exist and be found because the steels
30 networks (four hidden nodes), obtained when different series of input variables
steel’’ and the ANN’s were trained with the classical LM algorithm. In all cases, the
ical elements indicated on the graphs. Error bars were calculated with Eq. (4), �e was
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of the database are not sampled in such a way that the chemical
content of each element varies independently. On the contrary,
the nine steels in the RADAMO database set can uniquely be
labeled by just looking at the content of two chemical elements.

A way to differentiate between the importance of Ni, Si and Mn
content as variables determining irradiation hardening is to inves-
tigate how the ANN is accurate for other steels, whose composition
is far from the ranges covered by the training and reference sets.
Fig. 6 shows the accuracy of the predictions on the VVER database,
obtained by using the same committees of networks as in Fig. 5.
We clearly see that: (1) the Cu content variable alone is not enough
to ensure accurate extrapolations; (2) in this case Ni content ap-
pears the best one to retain, as the second most influential chem-
ical element after Cu, and the one that provides the best
extrapolation capabilities.

Finally, our attempt to improve the correlation by taking more
than two chemical elements into account failed, because the
ANN accuracy was never better than that shown in Figs. 5 and 6.
This can either be explained by the fact that a hypothetical syner-
gic effect of Si, Mn and Ni on hardening, plus the effect of Cu, re-
moves the need to take all chemical elements into account, or,
more simply, that the database does not contain enough training
examples to correctly deal with such a regression problem, if more
than four input variables are involved.

To summarize, we have shown in this section that the highest
quality ANN predictions can be obtained by taking just four input
variables into account: neutron fluence, irradiation temperature,
Cu and Ni content. Neutron flux and product form have no signif-
icant influence on the RADAMO DrY output.

4.2. Comparison between the proposed training schemes

In this section, we retain the four input variables that were se-
lected based on the study reported in the previous section (neutron
fluence, irradiation temperature, Cu and Ni contents) and compare
Fig. 6. ANN quality of prediction for the VVER database, using the same committees o
definition of �e and R2).
the ANN accuracy of predictions after training with either the clas-
sical or the Bayesian LM algorithm, as well as defining training and
reference sets either ‘‘by independent points’’ or ‘‘by steel’’ (see
Section 2.1).

4.2.1. Comparison of the set definition algorithms
In Fig. 7, the performance of ANN committees trained with the

classical LM algorithm is shown, defining the training and refer-
ence sets either ‘‘by independent points’’ (left side) or ‘‘by steel’’
(right side). In the same figure (lower part), the ANN committee
is also tested on the high fluence set, PWR_HF. The biases �b, when
shown, were calculated as:

�b ¼ 1
N

XN

i¼1

ðOi � diÞ ð6Þ

where di is the desired ANN output for the high neutron fluence
example i out of N, and Oi is the actual ANN output for the same in-
put variables. We see that the predictions on the reference sets
(upper part of the figure) are slightly more accurate when the algo-
rithm ‘‘by independent points’’ is used. The predictions on the high
fluence set (lower part) are slightly more biased when the algo-
rithm ‘‘by steel’’ is used. This can be explained by the fact that the
ANN, in the first case, is more specialized for the particular steels
represented in the database, and therefore manages to perform a
more accurate extrapolation on the neutron fluence variable. As
an additional illustration, the performance of the same ANN com-
mittees is illustrated, in Fig. 8, where predictions are obtained for
the steels of the VVER database, i.e. with chemical compositions
that are far from those used during training, either in the training
or reference sets. We can see that the committee of networks yields
slightly better extrapolations when training and reference sets were
defined ‘‘by steel’’.

It therefore appears that the use of the algorithm ‘‘by indepen-
dent points’’ to define the training and reference sets is preferable
for the purpose of extrapolation on the neutron fluence variable,
f networks as in Fig. 5, i.e. trained using the PWR data. (See Fig. 5 caption for the



Fig. 7. Quality of prediction for committees of 30 networks (four hidden nodes), trained with the classical algorithm. Training and reference sets were either defined ‘‘by
independent points’’ (left side) or ‘‘by steel’’ (right side). Error bars were calculated with Eq. (4), �e with Eq. (5), �b with Eq. (6), and R2 is Pearson’s product-moment correlation
coefficient. Upper part: predictions for the reference set; lower part: predictions for the high neutron fluence set.

Fig. 8. ANN quality of prediction measured on the VVER database, using the same committees of networks as in Fig. 7, i.e. trained using the PWR data. (See Fig. 6 caption for
the definition of �e and R2).
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considering a steel that is already represented in the database.
Otherwise, the use of the algorithm ‘‘by steel’’ is recommended,
in order to predict the hardening of steels not included in the ref-
erence database.

4.2.2. Comparison between classical and Bayesian training algorithms
Fig. 9 is the equivalent of Fig. 7, for ANN committees trained

with the Bayesian LM algorithm, defining training and reference
sets either ‘‘by independent points’’ (right side) or ‘‘by steel’’ (left
side). In comparison to Fig. 7, we see that the general accuracy of
prediction is significantly lower than when classical LM training
is used. In particular, the biases of the predictions on the high flu-
ence set are much larger. This can be explained by the introduction
of node decay in Eq. (2) (Section 2.2).

The predicted dependence of hardening on fluence for different
temperatures, for two steels of the reference database, is shown in
Fig. 10. We see that the Bayesian trained network is accurate for
the higher temperature (300 �C), and is in fact closer to experimen-
tal data than the other network (trained in a classical way), be-
cause the average prediction line touches the bulk of
experimental points and the error bands calculated with Eq. (4)
encompass all of them. The quality of the predictions for the lower
temperature (265 �C), however, is poor compared to the classically
trained network. This can be explained by the fact that this tem-
perature is poorly represented in the RADAMO database: only
48 data points, i.e. less than 15% of the database. As the minimiza-
tion of the function f, in Eq. (2), is solved as a mean-square optimi-
zation problem, and as node decay prevents the network from
developing a complex structure, the ANN became specialized for
the higher temperature, that largely dominates the database.

One possible way to improve the generality of the Bayesian
trained ANN, for the irradiation temperature variable, could



Fig. 9. Quality of prediction for committees of 30 networks (four hidden nodes), trained with the Bayesian algorithm. Training and reference sets were either defined ‘‘by
independent points’’ (left side) or ‘‘by steel’’ (right side). Error bars were calculated with Eq. (4), �e was calculated with Eq. (5), �b was calculated with Eq. (6), and R2 is Pearson’s
product-moment correlation coefficient. Top: predictions for the reference set; bottom: predictions for the high neutron fluence set.

Fig. 10. Evolution with neutron fluence of the ANN-predicted DrY, versus experimental measurements, for two steels. Predictions are obtained using a committee of
30 networks (four hidden nodes). The training and reference sets were generated ‘‘on independent points’’. Dashed lines show the error bands calculated with Eq. (4). Left
side: classical training; right side: Bayesian training.
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Fig. 11. Quality of prediction for committees of 30 networks (four hidden nodes), trained with the PWR data (training and reference sets were defined with algorithm B), for
the VVER data (T = 300 �C). The training algorithm was either classical or Bayesian LM. Error bars were calculated with Eq. (4), �e was calculated with Eq. (5), �b was calculated
with Eq. (6), and R2 is Pearson’s product-moment correlation coefficient.
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therefore be to homogenize the database, by removing several
points corresponding to 300 �C, so that each temperature (265 �C
and 300 �C) represents about 50% of the database. We thus tried
re-training with only 108 data points of the database: nine steels
times two temperatures times six data points per steel and per
temperature. Unfortunately, even after this homogenization the
Bayesian trained ANN accuracy is not improved for both tempera-
tures. This could be the consequence of the limited amount of
steels in the database, which makes the application of Bayesian
training inappropriate: node decay is apparently too strong a con-
straint that inhibits the ANN quality of prediction, despite its the-
oretically higher extrapolation skills. In other words, Bayesian
training seems to express its full potential only if a sufficiently
homogeneous and large database is available for training.

To conclude this study, Fig. 11 compares the accuracy of the
predictions provided by the classically trained or by the Bayesian
trained ANN committee on the VVER database. Only data points
corresponding to 300 �C are shown, since we have already ob-
served that the Bayesian network is inappropriate for the lower
temperature. We can see that the accuracy, estimated on the basis
of mean error and correlation, is very similar in both cases,
although slightly lower for the Bayesian trained ANN committee.
We may summarize that, if trained on a database larger than
RADAMO, the accuracy achieved with Bayesian training would be
higher than with classical training. However, in this specific case,
very similar results are obtained in both cases when extrapolating
to the different chemical compositions found in VVER steels.
5. Concluding remarks

In this paper, we have shown that artificial neural networks can
be used to accurately predict neutron irradiation induced harden-
ing of reactor pressure vessel steels, by taking into account the
neutron fluence, irradiation temperature, Cu and Ni contents. The
advantage of this numerical regression technique is that no
hypothesis about how exactly these input variables influence hard-
ening needs to be explicitly formulated, as the artificial intelligence
approach itself takes care of finding non-evident relationships be-
tween the input variables and the output. This allowed us to point
out the apparently negligible influence of the neutron flux, as well
as of the product form, as input variables determining hardening,
at least within the range of chemical composition and irradiation
temperatures covered by the RADAMO database. At the same time,
we have shown that the determination of the most influential
chemical elements for hardening based on purely empirical consid-
erations is not straightforward.

We have compared two training algorithms, as well as two
methods for defining training and reference sets from the available
database. We concluded that training the artificial neural network
with an early stopping regularized algorithm, without the applica-
tion of node decay, and defining training and reference sets ‘‘by
independent points’’, can be recommended in order to train
networks that can be accurately extrapolated from an existing
database to high neutron fluences.

However, the accuracy in the extrapolation to different chemi-
cal compositions (VVER) is not fully satisfactory. In particular,
the application of Bayesian node decay as a way to construct better
networks provided no significant improvement, probably because
of the limited amount of examples in the RADAMO database. In fu-
ture work, we will further investigate the possibility of extrapolat-
ing to different chemical compositions, by extending the database
and/or combining several databases of irradiated steels. The appli-
cation to surveillance data will be our ultimate objective.
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